The Physics Classroom
spacer image spacer image
spacer image
spacer image
Physics Tutorial
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image The Anatomy of a Curved Mirror
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image
spacer image

Lesson 3: Concave Mirrors


The Anatomy of a Curved Mirror

Thus far in this unit, our focus has been the reflection of light off flat surfaces and the formation of images by concave-convex mirror diagramreflection off of plane mirrors. In Lessons 3 and 4 we will turn attention to the topic of curved mirrors, and specifically curved mirrors which have the shape of spheres. Such mirrors are called spherical mirrors. The two types of spherical mirrors are shown in the diagram on the right. Spherical mirrors can be thought of as a portion of a sphere which was sliced away and then silvered on one of the sides to form a reflecting surface. Concave mirrors were silvered on the inside of the sphere and convex mirrors were silvered on the outside of the sphere. In Lesson 3 we will focus on concave mirrors and in Lesson 4 we will focus on convex mirrors.

Beginning a study of spherical mirrors demands that you first become acquainted with some terminology which will be periodically used. The internalized understanding of the following terms will be essential during Lessons 3 and 4.

Principal axis
Center of Curvature
Vertex
Focal Point
Radius of Curvature
Focal Length

If a concave mirror is thought of as being a slice of a sphere, then there would be a line passing through the center of the sphere and attaching to the mirror in the exact center of the mirror. This line is known as the principal axis. The point in the center of sphere from which the mirror was sliced is known as the center of curvature and is denoted by the letter C in the diagram below. The point on the mirror's surface where the principal axis meets the mirror is known as the vertex and is denoted by the letter A in the diagram below. The vertex is the geometric center of the mirror. Midway between the vertex and the center of curvature is a point known as the focal point; the focal point is denoted by the letter F in the diagram below. The distance from the vertex to the center of curvature is known as the radius of curvature (abbreviated by "R"). The radius of curvature is the radius of the sphere from which the mirror was cut. Finally, the distance from the mirror to the focal point is known as the focal length (abbreviated by "f"). Since the focal point is the midpoint of the line segment adjoining the vertex and the center of curvature, the focal length would be one-half the radius of curvature.

diagram

The focal point is the point in space at which light incident towards the mirror and traveling parallel to the principal axis will meet after reflection. diagramThe diagram at the right depicts this principle. In fact, if some light from the Sun was collected by a concave mirror, then it would converge at the focal point. Because the Sun is such a large distance from the Earth, any light rays from the Sun which strike the mirror will essentially be traveling parallel to the principal axis. As such, this light should reflect through the focal point. Perhaps you remember the outdoors demonstration in which a pencil was engulfed in flames in a matter of seconds when placed at the focal point of the demonstration mirror. In the demonstration, whatever light from the Sun which hit the mirror was focused at the point where the pencil was. To the surprise of many, the heat was sufficient to ignite the pencil. Wow!

As we proceed through Lesson 3, we will observe the images formed by concave mirrors. Depending on the object location, the image could be enlarged or reduced in size or even the same size as the object; the image could be inverted or upright; and the image will be located in a specific region along the principal axis. To understand these relationships between object and image, you may need to review these vocabulary terms.

 

 

Check Your Understanding
  1. Light from a distant star is collected by a concave mirror. How far from the mirror do the light rays converge if the "radius of curvature" of the mirror is 150 cm?


     

  2. Suppose your teacher gives you a concave mirror and asks you to find the focal point. Describe the procedure you would use to do this.





NEXT >>

spacer image
Capturé par MemoWeb ŕ partir de http://www.physicsclassroom.com/Class/refln/U13L3a.html  le 17/11/01