Sciences et laboratoire
Thème1:
Enjeux énergétiques
JMP

Comment fonctionne une pile (générateur électrochimique)?

Compétences visées	Acquis	En voie d'acquisition	Non Acquis
Extraire l'information			
Utile			
Mettre en œuvre une			
démarche			
expérimentale			
Communiquer			

I Approche historique:

Lire le doc joint et répondre aux questions :

- 1) Que fallait-il pour que la grenouille de Galvani contracte ses muscles ?
- 2) Les interprétations de Galvani et de Volta vis-à-vis du phénomène étaient-elles les mêmes ?
- 3) Quels « éléments » composent la pile de Volta?

Il Comment reproduire la pile de Volta ?

- 1) A l'aide des lames (Fer, Aluminium, cuivre, zinc et plomb) à votre disposition, proposer un protocole expérimental pour fabriquer différents éléments de pile et mesurer la tension à leurs bornes, indiquer quel est le couple qui semble le mieux marcher ?
- Fabriquer alors une pile, avec ces éléments de pile, et justifier le nom de pile pour ce genre de générateur électrochimique.
 Lier la tension aux bornes de la pile avec la tension aux bornes d'un élément.

III Principe de fonctionnement d'une autre pile : La pile Daniell

La pile de Volta était très limitée au niveau du courant qu'elle débitait, quand le télégraphe est apparu (fin du 19 eme siècle), on a découvert une pile utilisant les mêmes métaux, mais permettant de délivrer des courants plus importants.

Le fonctionnement de celle-ci, comme tous les autres piles, repose sur une réaction d'oxydoréduction se déroulant entre un donneur d'électrons (le réducteur) et un preneur d'électrons (l'oxydant), cette réaction dégage de l'énergie que l'on pourra « transformer » en énergie électrique.

1) Qui réagit avec qui ?

On retrouvera dans la pile Daniell, le Cuivre métal (Cu), les ions cuivre (Cu²⁺), le métal zinc (Zn) et les ions (Zn²⁺), les ions sulfate ne réagissant pas.

On donne:

Oxydant	Zn^{2+}	Cu ²⁺
Réducteur	Zn	Cu

Identifications des ions :

Cu²⁺(aq) donne avec les ions HO⁻, présents dans l'hydroxyde de sodium un précipité bleu

Zn²⁺(aq) donne avec les ions HO⁻, présents dans l'hydroxyde de sodium un précipité blanc.

A votre disposition: solution aqueuse de sulfate de zinc (Zn^{2+}) , solution aqueuse de sulfate de cuivre (Cu^{2+}) , poudre de cuivre (Cu), poudre de Zinc (Zn), solution d'hydroxyde de sodium(dangereux pour les yeux – lunettes obligatoires), tubes à essais, entonnoir et papier filtre.

- a)Proposer un protocole expérimental écrit permettant de savoir si la réaction a lieu entre Zn²⁺ et Cu, ou entre Cu²⁺ et Fe
- b) Qu'est-ce qui vous permet de dire que cette réaction libère de l'énergie ?
- c) Déduire alors ci-dessous les propositions exactes
 - $Cu + Zn^{2+} \rightarrow Cu^{2+} + Zn$
 - $Cu^{2+} + Zn \rightarrow Zn^{2+} + Cu$
 - Les ions Zn²⁺ arrachent les électrons du métal cuivre Cu.
 - Les ions Cu²⁺ arrachent les électrons du métal Zinc Zn

2) Fonctionnement de la pile Daniell (Prochain TP)