Synthèse 5 Seconde

Comment expliquer la formation des ions Monoatomiques et des molécules

I REPARTITION DES ELECTRONS POUR UN ATOME OU UN ION MONOATOMIQUE

Les électrons occupent des niveaux d'énergie encore appelé **couches électroniques**. Ces couches sont au nombre de 7 :

On leur attribue une lettre: K, L, M, N, O, P, Q.

Le nombre maximal d'électrons sur une couche est donné par le principe de Pauli, la couche de numéro n peut contenir au maximum 2n² électrons.

Couche	K	L	М	N	0	Р	Q
Nombre n	1	2	3	4	5	6	7
nombre	2	8	18	32	50	72	98
max d'e-							

Pour les 18 premiers éléments de H à Ar, le remplissage est simple, les e- occupent d'abord la couche K, puis la couche L, et M quand les précédentes sont remplies.

A partir de l'élément 19, le remplissage est plus complexe et n'est pas au programme au lycée.

Exemple pour Cl (Z=17) et Cl-

CI: K^2L^8 , M^7 comme CI comporte un électron de plus CI: K^2L^8 , M^8

Répartition électronique des 18 premiers éléments : cliquer ici

II REGLE DU DUET ET DE L'OCTET.

Au cours des transformations chimiques, les atomes ont tendance à acquérir la structure électronique du gaz rare le plus proche :

- soit deux électrons sur la couche externe pour les atomes proches de l'hélium (règle du duet)
- et huit électrons sur la couche périphérique pour les autres (règle de l'octet)

Exemple : Cl respecte la règle de l'octet : Cl a capté un électron pour voir 8 e- sur sa couche externe.

Autre exemple : Al (Z = 13) : $K^2 L^8$, M^3 aura tendance à perdre ses 3 e- périphériques pour donner l'ion Al^{3+} : $K^2 L^8$