- Nom et prénom : correction
- 1) Le rayonnement électromagnétiques de longueur d'onde dans le vide égale à 600 nm appartient au domaine des :
 - a) Infrarouge
 - b) Ultraviolet
 - c) Ondes radio
- 2) Une onde électromagnétique de longueur d'onde dans le vide 100 nm appartient au domaine :
 - a) Infrarouge
 - b) visible
 - c) UV
- 3) Un objet très chaud de l'Univers (hors du système solaire) tel qu'un quasar , est plus facilement étudié en lumière
 - a) Rayon X
 - b) Infrarouge
 - c) Visible
- 4) Le rayonnement UV provenant de l'espace est en grande partie :
 - a) transmis par l'atmosphère.
 - b) arrêté par l'atmosphère
 - c) arrêté par le champ magnétique terrestre
- 5) La relation entre la longueur d'onde λ et la célérité v est :
 - a) $\lambda = v.f$ (f = fréquence de l'onde)
 - b) $\lambda = v \cdot T$ (T période de l'onde)
 - c) $v = \lambda.T$
- 6) Une onde électromagnétique.
 - a) Ne se déplace que dans le vide
 - b) Ne se déplace que dans les milieux matériels
 - c) Peut se déplacer dans les deux.
- 7) Une onde longitudinale est une onde mécanique telle que.
 - a) La perturbation et sa direction de propagation sont parallèles
 - b) La perturbation et son sens de propagation sont parallèles
 - c) la perturbation et sa direction de propagation sont perpendiculaires

Exercice 1 : mesure de célérité.

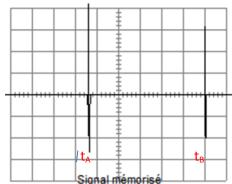
Un son produit par un claquement de main est capté par deux micros et un oscilloscope à mémoire.

Le système d'acquisition est démarré au claquement de main $t_0 = 0$ s Voir montage ci-dessous.(abscisses en m)

a) Quelles sont les abscisses x_A et x_B de chaque micro.

 $x_A = 1m \text{ et } x_B = 2.5 \text{ m}$

b) A l'aide de l'oscillogramme ci-dessous déduire les dates t_A et t_B auxquelles le son est perçu par le micro. Base de temps : 1ms/div


 $t_A = 3,6 \text{ div x } 1\text{ms/div} = 3,6\text{ms}$ $t_B = 9 \text{ div x } 1\text{ms/div} = 9 \text{ ms}$

c) Déduire le retard $\boldsymbol{\tau}$ entre les deux signaux.

 $\tau = t_B - t_A 9 - 3.6 = 5.4 \text{ ms}$

d) Déduire la célérité du son dans ce

 $v = (x_B - x_A) / (t_B - t_A) = 1,5 \text{ m/5.4.10}^{-3} \text{ s}$ v = 277 m/s

- e) L'intensité du son reçu sur le micro 1 est de 1.10⁻⁶ W.m⁻². Estimer le niveau sonore L_1 correspondant . (On rappelle que $I_0 = 1.10^{-12} \text{w.m}^{-2}$) $L = 10 \log(I_1/I_0) = 10 \log 10^{-6+12} = 60 \text{ dB}$
- f) Estimer la valeur de I_2 et de L_2 . (On donne $S = 2\pi R^2$, surface atteinte par le front d'onde)

g)
$$\frac{IB}{IA} = \frac{\frac{P}{2\pi RB^2}}{\frac{P}{2\pi RA^2}} = \frac{RA^2}{RB^2} donc IB = IA \times \frac{RA^2}{RB^2} = 1.10^{-6} \times \frac{1^2}{2.5^2} = 1.6.10^{-7} wm^{-2}$$

h)

i)
$$L_2 = 10 \log \frac{1.6.10^{-7}}{10^{-12}} = 52 \ dB$$

Exercice 2 : Acide et Base

- a) Quel est le nom des ions H₃O⁺ ? Ions Oxonium
- b) Le pH d'une solution aqueuse est égal à 2, quelle est la concentration des ions H₃O⁺ dans cette solution?

 $[H_3O^+] = 10^{-pH} = 10^{-2} \text{ mol/L}$

c) On dilue la solution par deux, que devient alors la valeur théorique du Ha

quand on divise par deux, pH = $-\log(10^{\circ}2/2) = -[\log 10^{\circ}2 - \log 2] = -(-100)$ 2-0.3) = +2.3 (on pouvait aussi faire le calcul à la calculatrice

- d) Donner la définition d'une base suivant Bronsted
- e) Quelles sont les bases conjuguées des acides suivants ? HCI /CI H_3O^+/H_2O H_2O / HO^T
- f) Quels sont les acides conjugués des bases suivantes. H₂CO₃ / HCO₃ NH₄⁺/ NH₃

HCOOH /HCOO